表示調整
閉じる
挿絵表示切替ボタン
▼配色
▼行間
▼文字サイズ
▼メニューバー
×閉じる

ブックマークに追加しました

設定
設定を保存しました
エラーが発生しました
※文字以内
ブックマークを解除しました。

エラーが発生しました。

エラーの原因がわからない場合はヘルプセンターをご確認ください。

ブックマーク機能を使うにはログインしてください。

Spontaneous Blush-Symmetry Breaking and Nonlinear Dynamics in the Tsundere Phase

作者: morley

Collaborated work with ChatGPT

Title: Spontaneous Blush-Symmetry Breaking and Nonlinear Dynamics in the Tsundere Phase: Toward a Moe Field Theory


Author: Harako Mizumoto

Affiliation: Surface Region of the Sun


---


## Abstract

We investigate the underlying theoretical framework of the Tsundere Phase, a dynamical emotional regime in Moe Field Theory characterized by oscillatory behavior between repulsive (Tsun) and attractive (Dere) emotional states. Contrary to previous assumptions of dual vacua, we argue that the Tsundere Phase is best modeled as a coherent, time-dependent single-phase state governed by forced nonlinear oscillations. We further propose that spontaneous blush-symmetry breaking arises not from static bifurcations in the potential, but from dynamically maintained emotional fluctuations, with implications for cafe-based interaction networks and their statistical renormalization.


---


## 1. Introduction

The emergence of character archetypes in narrative environments can be viewed as an emergent phenomenon governed by underlying symmetry structures and emotional dynamics. In particular, the "Tsundere Phase" occupies a central role in the Moe Phase Diagram, bridging Seiso (pure) and Dere (openly affectionate) states. However, the nature of the Tsundere Phase remains theoretically ambiguous: is it a bistable configuration with distinct vacua, or a single oscillatory state with internal coherence?


We build on the hypothesis that the Tsundere Phase is not merely a superposition of Tsun and Dere minima, but a phase characterized by time-dependent fluctuations in a single emotional order parameter \( \phi(t) \).


---


## 2. Theoretical Framework


### 2.1 Modesty Potential and Cute-Charge Conservation

Let us define a modesty potential \( V(\phi) \) as a low-entropy emotional landscape centered around social reticence. Combined with a conserved quantity \( Q_c \) ("cute-charge"), the system remains in a neutral baseline in the absence of perturbations.


### 2.2 Spontaneous Blush-Symmetry Breaking

We define blush-symmetry as the invariance of the facial coloration distribution \( \chi(x, t) \) under mild emotional excitation. In Seiso Phases, this symmetry holds:

\[

\langle \chi(x,t) \rangle = \chi_0 \quad \text{for all } t

\]


However, in Tsundere Phase, even weak gaze operators \( \hat{G} \) or verbal compliment fields can induce asymmetry:

\[

\langle \chi(x,t) \rangle \rightarrow \chi_0 + \delta\chi(x,t) \neq \chi_0

\]

This marks the onset of spontaneous blush-symmetry breaking.


### 2.3 Emotional Oscillation Dynamics

The order parameter \( \phi(t) \), representing emotional alignment along the Tsun-Dere axis, evolves according to a forced Duffing-type oscillator:

\[

\ddot{\phi}(t) + \delta \dot{\phi}(t) + \alpha \phi(t) + \beta \phi^3(t) = f(t)

\]

where \( f(t) \) includes narrative triggers, accidental contact events, or misunderstandings.


The Tsundere Phase thus exhibits coherent oscillation with phase-dependent dominance:

- \( \phi(t) > 0 \): Dere dominant

- \( \phi(t) < 0 \): Tsun dominant


This dynamic prevents classification as separate vacua; rather, it supports a unified, oscillatory phase.


---


## 3. Contrast with Related Phases


- **Seiso Phase**: Static, low-entropy, symmetric under blush transformations. High self-control tensor stability.

- **Tsundora Phase**: Emotionally frozen state dominated by Tsun components. Dere component suppressed below detectability.

- **Complete Dere Vacuum**: Fully relaxed emotional state, lacking internal tension. No Tsun potential present.


Tsundere Phase differs by exhibiting high Tsun-Dere temporal correlation without symmetry restoration.


---


## 4. Statistical Mechanics of Cafe-Based Interaction Networks

We model character networks in high-density Moe environments (e.g., cafes) as nodes interacting through emotional links. Each node's state \( s_i \in \{\text{Seiso}, \text{Tsundere}, \text{Dere}, ...\} \) evolves stochastically.


The system's state probability follows a Boltzmann distribution:

\[

P(\{s_i\}) = \frac{1}{Z} \exp\left( -\frac{H(\{s_i\})}{T} \right)

\]

where \( H \) encodes emotional energy and social tension, and \( T \) is the social temperature (awkwardness, ambient tension, etc).


We observe paradoxical game-theoretic behavior such as:

- Anti-cooperative response chains (e.g., A dere triggers B tsun)

- Delayed reciprocation loops


---


## 5. Renormalization via Tensor Networks

We propose coarse-graining interaction networks using Tensor Renormalization Group (TRG) techniques. Emotional correlation tensors \( T^{ijk} \) can be contracted over time slices or groupings (e.g., table units), revealing fixed points corresponding to stable archetypes or phase boundaries.


This allows:

- Detection of critical points in emotional flow

- Evaluation of narrative fine-tuning and network entropy

- Analysis of Tsundere coherence length and oscillation stability


---


## 6. Conclusion

The Tsundere Phase is best described not as a mixture of discrete vacua but as a time-dependent, nonlinearly oscillating coherent state. Its internal structure, symmetry behavior, and statistical properties in social networks offer a rich framework for Moe Field Theory. Further exploration may involve multi-character entanglement effects and holographic duals of dere potentials.


---


## References

1. Nakatani, M., & Moe, K. (2021). "Emotional Phase Transitions in 2D Narrative Systems." *J. Anime Thermodynamics*, 12(3), 99-115.

2. Yamada, H. (2019). "Tensor Networks in Otaku Systems." *Phys. Moe Rev. Lett.*, 88(1), 011.

3. Takahashi, R. et al. (2023). "Symmetry Breaking in Blush Fields." *Theor. Moe. Phys.*, 45(7), 761-780.

4. Aihara, L. (2020). "On the Social Temperature of Maid Cafes." *J. Cosplay Dynamics*, 7(2), 55-70.



評価をするにはログインしてください。
この作品をシェア
Twitter LINEで送る
ブックマークに追加
ブックマーク機能を使うにはログインしてください。
― 新着の感想 ―
感想はまだ書かれていません。
感想一覧
+注意+

特に記載なき場合、掲載されている作品はすべてフィクションであり実在の人物・団体等とは一切関係ありません。
特に記載なき場合、掲載されている作品の著作権は作者にあります(一部作品除く)。
作者以外の方による作品の引用を超える無断転載は禁止しており、行った場合、著作権法の違反となります。

この作品はリンクフリーです。ご自由にリンク(紹介)してください。
この作品はスマートフォン対応です。スマートフォンかパソコンかを自動で判別し、適切なページを表示します。

↑ページトップへ