表示調整
閉じる
挿絵表示切替ボタン
▼配色
▼行間
▼文字サイズ
▼メニューバー
×閉じる

ブックマークに追加しました

設定
0/400
設定を保存しました
エラーが発生しました
※文字以内
ブックマークを解除しました。

エラーが発生しました。

エラーの原因がわからない場合はヘルプセンターをご確認ください。

638/641

628-EN, The Hashrate-Grover problem

Quantum Grover isn't difficult.

What it's doing is just probability calculation.

Very simple.

It's just a little frightening.


What can be said, at the very least, is this:

each trial is independent,

theoretically repeatable without limit,

failures are not recorded, and no correlation remains.


And success, only needs to happen once.


From a security perspective, I'm sorry to say it, but

these are extremely harsh conditions.


Now, suppose we prepare 100 quantum Grover systems.

In each quantum system, let us assume that the probability amplitude assigned to the target region

(hash < target)

is about 0.001% higher than that of the other candidates.


Then, across the entire quantum system,

the probability that a single quantum operation yields the correct answer - and remember,

one success is enough-becomes:


1 - (1 - 0.00001)^100 = 0.00099 ...


That is, almost 0.001…, close to 0.1%.


Furthermore, suppose that within a single block generation interval,

this quantum system can perform 100 quantum operations.

Again, since one success is enough:


1 - (1 - 0.001)^100 = 0.095 ...


This means that a single block is obtained with a probability just under 10%.


If this succeeds three times consecutively - in other words, three blocks in a row-then:


(0.1)^3 = 0.001


Therefore, if 144 blocks are generated per day:


1 - (1 - 0.001)^(144 / 3) = 0.0468 ...


In other words, there is approximately a 4.7% probability per day that,

in the vicinity of the Hashrate-Grover boundary,

quantum Grover breaks through the hash-rate defense.


This probability... is far too high.


Let us take the difficulty adjustment interval to be 14 days. Then:


1 - (1 - 0.047)^14 = 0.49 ...


About 49% in 14 days.

A level that can practically be called success.


Yes.

This is the basic structure of quantum Grover.

There are, of course, other techniques as well-methods for manipulating probability amplitudes.


And this...

this Hashrate-Grover problem is nothing less than

a test of whether crypto -cryptocurrency- can continue to exist at all.


I am an observer.

I won't speak of hard forks.

I simply record, carefully, which worldline is chosen.

評価をするにはログインしてください。
ブックマークに追加
ブックマーク機能を使うにはログインしてください。
― 新着の感想 ―
このエピソードに感想はまだ書かれていません。
感想一覧
+注意+

特に記載なき場合、掲載されている作品はすべてフィクションであり実在の人物・団体等とは一切関係ありません。
特に記載なき場合、掲載されている作品の著作権は作者にあります(一部作品除く)。
作者以外の方による作品の引用を超える無断転載は禁止しており、行った場合、著作権法の違反となります。

↑ページトップへ