表示調整
閉じる
挿絵表示切替ボタン
▼配色
▼行間
▼文字サイズ
▼メニューバー
×閉じる

ブックマークに追加しました

設定
0/400
設定を保存しました
エラーが発生しました
※文字以内
ブックマークを解除しました。

エラーが発生しました。

エラーの原因がわからない場合はヘルプセンターをご確認ください。

ブックマーク機能を使うにはログインしてください。
194/268

人工知能がプログラムした方が人間がプログラムするより性能がよくなる

人工知能が人工知能をプログラムする時代がやってきた



http://jp.techcrunch.com/2017/01/20/20170119ai-software-is-figuring-out-how-to-best-humans-at-designing-new-ai-software/




プログラムをプログラムするのは誰か? 近々、人間ではなく別の人工知能プログラムが高度な人工知能プログラムを書けるようになるという。MITのレポートによれば、Google Brain始め機械学習ソフトを開発している多くの組織でこのことが確認された。人工知能によって作成された人工知能プログラムの性能が人間が開発したプロダクトと同等であるか、場合によっては上回わっていたという。


すると機械学習プログラムを書けるデベロッパーでさえ失業の危険にさらされるのだろうか? 早まってはならないが、そういうことではない。まず現状では人工知能に人間に役立つ機械学習プログラムを書かせるためには膨大なコンピューター処理能力を必要とする。Google Brainにおける「人間以上のプログラム」を書かせる実験では人工知能に画像認識プログラムを書かせるために画像処理能力があるプロセッサを―なんと!―800台も協調作動させる必要があったという。これは安くつく話ではない。


しかしこうした手法の優位な点もはっきりしている。必要なコンピューター・リソースを減少させるための開発も進んでいる。機械学習の開発を機械まかせにできるとなれば、この分野における人的資源の不足という問題を根本的に解決できるだろう。現在スタートアップや大学は少しでも機械学習分野の知識がある人材を獲得しようと激しく争っている。また膨大なデータをコンピューターに読み込ませてパラメーターを調整して機械学習システムを訓練するという退屈な仕事をコンピューター自身に任せることができるなら、研究者は人間にとってもっと役立つ、あるいはもっと重要な分野に集中できる。


AIが別のAIをチューニングすることには別のメリットもある。現在のAIシステムの学習曲線はかなり急だ。つまり意味のある結果を得るためには最初に大量のデータを必要とする。AIによる機械学習の改良が実用化されれば、当初必要とされるデータ量を大きく減少させることができるかもしれない。自動運転システムにも影響が大きいだろう。自動運転車の開発の場合、プロトタイプで延べ100万キロも走り回ってやっと実用化の入り口にたどり着いたかどうかというのが現状だ。


MITのメディアラボでは他の機械学習ソフトを利用できるソフトの開発をオープンソースで公開している。将来はあらゆる産業分野でコンピューターによって人工知能をプログラミングすることが主流となっていくはずだ。


AIの専門家は機械学習システムの構築には人間の努力が大量に必要であることを指摘するだろう。それは正しいが、同時にそうした努力の一部分であれ、機械に肩代わりさせることができれば影響は大きい。機械学習システムの開発のハードルが大きく下がるはずだ。自動運転システムを含め、数多くの分野でAIを利用したプロダクトが市場に出るだろう。しかし同時にAIの普及が人間の努力を不要にするとかあらゆる分野で失業を増やすといった不安が根拠のないものであることも明らかだ。


Featured Image: mistery/Shutterstock


〔日本版〕人工知能と機械学習の関係についてはいろいろな立場があるが、ここではとりあえず人工知能という上位区分に機械学習も含まれると解釈している。


[原文へ]


(翻訳:滑川海彦@Facebook Google+)




以上。




ついに、人工知能がプログラムした方が人間がプログラムするより性能がよくなりました。アメリカが、おそらくグーグルが、トランプ大統領就任前日にとんでもない知らせをぶちこんできました。


これにより、プログラマーの在り方は大きく姿を変えるでしょう。




どんな未来が待っているのかわかりません。我々は人類史で最も劇的な時代を生きている。






追記。


よく読むと、まだできるのはパラメータ調整だけのようです。


>また膨大なデータをコンピューターに読み込ませてパラメーターを調整して機械学習シス

>テムを訓練するという退屈な仕事をコンピューター自身に任せることができるなら、研究

>者は人間にとってもっと役立つ、あるいはもっと重要な分野に集中できる。


評価をするにはログインしてください。
ブックマークに追加
ブックマーク機能を使うにはログインしてください。
― 新着の感想 ―
このエピソードに感想はまだ書かれていません。
感想一覧
+注意+

特に記載なき場合、掲載されている作品はすべてフィクションであり実在の人物・団体等とは一切関係ありません。
特に記載なき場合、掲載されている作品の著作権は作者にあります(一部作品除く)。
作者以外の方による作品の引用を超える無断転載は禁止しており、行った場合、著作権法の違反となります。

この作品はリンクフリーです。ご自由にリンク(紹介)してください。
この作品はスマートフォン対応です。スマートフォンかパソコンかを自動で判別し、適切なページを表示します。

↑ページトップへ