お嬢様が「博士の愛した数式」で読書感想文を書こうと無茶している単元
「先生! 今年の読書感想文は小川洋子先生の『博士の愛した数式』で書くことにするわ!」
「お嬢様ごときにあの世界観がわかるのですか?」
「わからないわ! だから書くのよ。ところで、オイラーの等式って何で美しいの?」
e + 1 = 0
「2つの超越数と虚数が -1 に回帰しているところでしょうね」
「難しいわ。超越数って何よ?」
「わかりやすく言うと、方程式の解にならない数のことですよ」
「わかりやすく言われてもわからないわ。超越数は却下ね。それなら『e』って何なの?」
「『e』とは、『ネイピア数』のことですね。自然対数の底ともいいます。極限や対数を学ぶときに出てきますよ」
「出てきた記憶がないわ! それなら、『i』ってなあに?」
「『i』とは『虚数』です。『ルート-1』のことですよ。 i × i = -1 です」
「ちょっと可愛いわね。『i』は数字で表すといくつなの?」
「『i』は数字では表せませんよ」
「それは可哀そうね。感想文の中に『私は『i』がちょっと可哀そうだと思いました』って書かなくちゃ」
「可哀想な理由をコメントしないと、何だかわかりません」
「『π』はわかるわ。『円周率』ね。数字で表すと『3』だわ」
「お嬢様、どこのゆとり教育世代ですか」
「次は江夏ね。やっぱり『江夏の21球』は外せないわね」
「本のタイトルが変わってますよ。だいたい、博士は阪神タイガースファンなのに、なんで広島東洋カープ時代の江夏について語らにゃならないのですか」
「そうね、それもそうだわ。ここは『21』じゃなくて、『背番号28』について書かなくちゃ」
「そうですね。作品中でも『28』は『完全数』と紹介されてますからね」
「完全数ってなあに?」
「自身の約数の合計が自身と同じ値になる数字ですよ」
28 = 1 + 2 + 4 + 7 + 14
「すごいわ! ネプチューンマンも真っ青ね。『江夏の背番号はヘルミッショネルズも敵わないパーフェクト超人でした』素晴らしい文章だわ」
「『i』が可哀そうだとか、キン肉マンだとか、いろいろおかしくなってきていますよお嬢様。あと、パーフェクト超人ではなくて、パーフェクトナンバーと書けば、正しい英語になりますよ」
「そんな細かいことなんかいいのよ! 読書感想文なんかノリよノリ。このまま博士についてはノーコメントで突っ走っても問題なしだわ!」
「さいですか。それでは私は昼食の準備に行ってきますね」
「いってらっしゃい!」
……。
先生が出て行ったあと、お嬢さまはマジックを取り出して何やら始める。
「私は、友愛数が一番気に入りました。なので、先生に内緒で、私のスリッパの裏に220、先生のスリッパの裏に284と小さく書きました」
そしてお嬢さまはつぶやいた。
「完璧ね」
そんなことも知らずに先生は今日もお昼の準備に勤しむ。
友愛数とは、互いの約数の和が互いの値になるという2つの数です。
本文で使用した友愛数は、220と284の組み合わせです。
220の約数は、1,2,4,5,10,11,20,22,44,55,110
284の約数は、1,2,4,71,142
220 = 1+2+4+71+142
284 = 1+2+4+5+10+11+20+22+44+55+110
※本文およびあとがきでは、表現のわかりやすさを優先し、完全数および友愛数の「約数」について「自分自身を含まない」という一文をあえて記載していません。「約数」の定義では、自分自身を含みますのでご注意ください。
※著作権関連については、引用にてご理解を賜る所存でございます。が、小川洋子先生、山際淳司先生、江夏豊先生、ゆでたまご先生もしくは運営様から何らかの指摘を頂いた場合には、すみやかに本文を削除いたします。